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THE CONSTRUCTION OF UNIVERSAL SURFACES IN EXTREMAL FROBLEMS OF DYNAMICS'

A.A. MELIKYAN and B.N. SOKOLOV

One of the singular manifolds, often met in problems of optimal control
and differential games, the universal hypersurface (the main line) /1/,

is considered. The theory proposed here of that surface includes a
certain Cauchy problem and the necessary condition of optimality of that
surface. The latter enables us to reduce the construction of the surface
to the Cauchy problem. The problem is formulated and sufficient conditions
for its solvability are given. It is shown that the necessary condition

of universal hypersurface optimality is the double smoothness of the
optimum~-result function on it. The sufficient condition for the existence
in the small of a universal hypersurface is formulated. The paper is a
continuation of investigations /2—4/ of the singular manifolds in extremal
problems of dynamics, and the subject is related to /5-9/.

A universal manifold in the phase space of an external problem consists of (singular)
optimal motions which from the neighbourhocd of that manifold are incident on it an angle
or are tangent to it. The universal hypersurface is the discontinuity surface of the positiocnal
/5/ optimal control /1/. The optimal-result function is continuous in the universal manifold
neighbourhocod and smooth on it, which follows from the geometry of trajectories. 1In the case
of a hypersurface it appears that from the set of geometrically admissible surfaces the
optimal one is that on which the optimal-result function is doubly smooth. This is one of
the results of the investigation which to some extent sclves the problem stated in /1/.

Using in the simplest version /1/ the inverse procedure, the indication of the presence
in the problem of the universal surface is the appearance of a region free of characteristics.
Hence, when constructing a universal hypersurface, the optimal-result function must be con-
structed simultanecusly with the surface and on both sides of it, This defines the specific
properties of the mathematical problem of constructing the surface., In connection with the
discontinuity of optimal positional control /7/, it should be mentioned that orn the singular
manifold the function of minimur (or minimax in game problems), used to write the eguation
/1, 7/, is discontinuocus.

Thus the singularity cf the universal type of hypersurface is not related to the dis-
continuity of the optimal-result function and its first two derivatives. However, the
procedure for constructing it is similar tc that for constructing a weak discontinuity /3, 4/,
i.e. the discontinuity manifold cf the optimal-result functicn.

1. Statement of the Cauchy problem. Let twc scalar functions u, (), u (z), z = R"
of class (" (T,) have on some hypersurface I; 2T, C R"™ identical values of all partial

derivatives with respect to the vector components I = (s1.....2,} up to crder m (where I, is
the neighbourhood cf some fixed point in R™). We will assume that the pair of functions (ug. uy)
smoothly jecin on I,. and we will denote that inclusion by (u,. u)) = K™ (Ih). i.e. K" (Ih) is
the set of all functions of class (™ (T,) that satisfy the conditions stated above.

Let a smooth manifeold I,. dimT,=n—2 T,C T, and doubly smooth function v(ry = C?
Ty}, Fy (z). Fy 3). = (¢, p, u) & R*™ ! Dbe specified, We will assume the point 2* =TI, to be
fixed and we will derote the neighbourheod by Ty

Problem 1. Tc determine the smooth marifeold I, dim I3 =1 — 1 ané the pair of functions
(g (). up (o)) = K*(Ty) that satisfy the following conditions: 1) T, IhC T 2) wy {0) =

i) =v (o= T, and 3)F, (rovupou;) = 0, &= Ty, i = 0,1, The conditions of solvability of
this problem and the procedure for obtaining its solution are given below in Sect.2.

2. Sufficient conditions of solvability. when xz=T,, the gradient p = uez = vy,

of the functions u; (+).i = 10,1 that are sought in problem 1 satisfies the set of equations
(B —1e yj)=0, j=1,2....,n—2, Fi{«(, p, 1) =0 (2.1)
i=1.2. ze&l,

where y; = y;(4) is some basis of the space tangent to I, at the point z.

Theorem 1. Let the functions Fy. F; be triply smooth and the following conditions be
satisfied: 1) the vector p* is the solution of (2.1) at the point z*, 2) when =%, p=
p*, b==1v (z*), the VeCtors ui. ....yns, Fo, F1, are linearly independent in R"; 3) the
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inequalities {{F,.Fi}, Fo} % 0. {F1, {F . F1}} =0 hold at point (z*, p*, v*), .and 4) the eguation
{F,. F1} =0 is satisfied, when p = w (2), 2 =T,. Then for each p* a unique solution uy, Uy,
Iy, of Problem 1 exists. The surface TI; consists of the r~components of the solutions of
equations with the Cauchy conditions

z.—{{FO' Fl}, FO}F1p+{F11 {Fo~ Fl}}FOp (2‘2)
P = —{{Fo. F1}, Fo}(F1z + pF1,) — {F1, {Fo. F1}} (Fox -

pFo). W = (p. 7)
2@ =25 p ) =w(), @ =vE) T,
{FO’F1}={F0:+pFou*Flp)-(plx+pplu~ Fop)

where p=w(z), z& T, is a smooth solution of (2.1), and {F, F,} is the Jacobi bracket of

the functions F,. F; /10/.
Let us formulate statements that will be used to prove Theorem 1.

Lemma 1. Let the pair of functions u,ve C,(I,) smoothly join on the manifold Ty, (v, e
K'(I'}), where
Iyiz;=0 (2.3)

For a doubly smooth union (u,1; & A2(I;) it is necessary and sufficient that at the point
T, the following equations are satisfied:

Uy =1y, ael (2.4)
Here and below the element of the Hess matrix is denoted by u;; = 6%, i1;0z7,.

Proof. The necessity of equation (2.4) is obvious. By the conditions of the lemma

duloz; = ov/déx;, i=1,....n, when zreT,. We differentiate these equations with respect to =, ...
I, i,e. with respect to the tangents to the directions I,. We obtain v =, i =4 ..,
nj=2,...,n These equations together with (Z2.4) constitute the required doubly smooth union.

Lemma 2. Let the functions u(s).v(r) satisfy, besides the conditions of Lemma 1, the
equations: F(z.uz. u}=0, G(r,15.v)=0. 7T, F, Gz, 2= (z,p,u). Then at points of the
surface T, the equation

{F,G} =~ F 6 (uy—vy) =0, z&T, (2.5)

holds.
We differentiate the identities F (s up. u: =0, G (z,1,.1) = 0 with respect to =z, i=1,...,n
and obtain

.
Fai z F ;uji_‘ﬂfu/'i=0 (p=u)
=1 -
)

Let us multiply the first equation termwise by 6, and the second by F, ~and subtract the
1 i

second from the first. Then adding then remainders obtained, related to the point zeTl,. and
taking into account that y=p.u;; =1, when i ;>1,zeTl,. we obtain (2.5).

Corollary. For every solution of Problem 1
(Ffo. Y= 0 for p=uw), z=I;

Lemma 3. Let the functions u.re (T, satisfy the conditions: 1) Froug.ur = 0. G (1. 1y,
V=0 rel, £ 6e¢y 2) w.oye AT, where T, is a doubly smooth hypersurface, and 3) =
are components of characteristics of the equations F= ¢ 6= 0. i.e, the vectors f,. G, do not
touch the surface T,. The condition (v, & A*(I,) is satisfied if and only if |{F,6}=0 for
p=u=1u=uv.re&l,;.

Proof. By the doubly smooth change of variables =gq (§). {= R" the surface I, is
reduced to the form § =0, i.e. (2.3). The change r= ¢({) generates in space (r.p.u) a
point contact transformation that maintains the Jacobi brackets /10/. Owing to the non-degener-
acy of the Jacobian det|éy i) = 0. the condition of non-tangency tc the surface I, is maintained
in new variables. The statement of Lemma 3 then follows from (2.5).

Note that Lemma 3 also holds for the surface T, of class (. To prove this it is necessary
to restate Lemmas 1 and 2 for the case of an arbitrary smooth surface I,. Preference was
given above to a particular form of (2.3) because of the simplicity of the calculations.

Proof of Theorem 1. The existence of a smooth solution p=uw(s), zeT, of system (2.1)
is ensured by condition 2) and the theorem on the implicit function.

Let us establish the existence of a solution of Problem 1. We set F_y(z) = {F,. F;} and
consider the Hamiltonian /W (z) = s Fy = hoFy - i_,F. = F

. When A= {Fe, Fi) Ful, ho= (Fy (Fp, F)) by = Fy
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/2, 4/.
Equations (2.2) represent the characteristic system
T =Hyp p = —Hi—pHy w = (p. H,)
consider on its own invariant manifold

W= {zeR™) Fo(z)= 0, Fy(z)= 0. F, (:) = 0}

System (2.2) satisfies the standard conditions for the existence and uniqueness of a
solution and its smooth dependence on the initial conditions /11, 12/.

The transversality of the vector H,(:*) to the manifold T, is ensured by conditions 1)
and 2) of the theorem. Hence the =z components of the solution of system (2.2) define the
smooth manifold Iy, =T, On I, we have the specified Cauchy conditions for the two equations
Fi=10,i=0,1. By virtue of condition (2) and 3) the vectors F. F,, prove to be transversal
to the surface I,. and hence the solution u;(sn) & C2(f,) of these eguations exists /12/. By
construction we have {Ff,. F,})=0 on T,. and hence the set u, u,7J; is the solution of Problem
1. For any other solution of Problem 1 we have by virtue of Lemma 3 the condition ({F,. F!=0
that is specified on T,.

Condition 3) implies that the gradient g, of the function g (v} = {F,. F;} is non-zero, when
p = uy(2), Direct calculation shows that the vector 1 of the form (2.2) touches T, i.e.

(¢x. )= 0, r & I, and the derivative p  of the vector p{z; in the direction of 2 is defined
by formula (2.2). System (2.2) satisfies the standard conditions for the existence and
unigueness of the solution whence follows the uniqueness of T,. The functions g (1), y (2)
are also unique solutions of the respective Cauchy problems. The theorem is proved.

Note that instead of the vector p* in condition 1) of Theorem 1, we may consider the
vector field p = u (z) and the function ¢ (r) on the manifold T, of class (', made compatible
by (2.1), as specified in advance, as done in the theory of eguations in first-order partial
derivatives /12/.

3. Construction of the universal manifold. we shall use the results of Sects.l
and 2 for the local construction of a singular universal surface in the problem of synthesis
for a dynamically controlled system of the form

C=fouy veEW /€ R (3.1)

where W — R™ is a closed bounded set. We shall consider the problem of otpimal high speed
action from an arbitrary initial point x =V onto the terminal manifold M & R"

Other problems of optimal control may be reduced tc this problem by standard methods /1,
5/. Note also that the universal surface considered below occurs not only in problems of
optimal control but, also, in the theory of differential games. In the latter case the system
of the form (3.1) may be obtained after substituting into the eguations of motion of a game
problem, of the continuous positional control of one of the players /7/.

Let us write the assumptions and constraints that apply to the problem of high~speed action
for system (2.1), which we shall limit to the open neighbourhood Ty T R" of some fixed point
7* = R". Let there be in T, an (n — 1)-dimensional smooth universal surface It to which
the optimal trajectories approach from both sides without touching it. The surface I') divides
the neighbourhoodé T,. into two open regions D;: Ty = D, —~ T+ D, 1Instead of indicating the
regions by D; or T,. we shall denote these regions by the expressions "the i-th side of
surface" or "the neighbourhood of Ti. " We set «* =T,

We denote the optimal-result function on the i-th side of I, i=0,1 by u; (), z=D;.
By assumption u; (z) = C? (D;) the function 1, (r} and u; (r) smoothly join on the surface T,

/8/. 1In regions D; the functions u; (s} satisfy the basic equation /1, 5, 7/
Fo(rouge (0) = mingew (Wi [z w)) =1 = (ug (2). 11 (2)) = (3.2)
1= O, = Di

Formula (3.2) is written on the assumption (taken as satisfied) that the set f(z, W) is
convex. The functions fi(z) are obtained by substituting into the right side of (3.1) the
extremal value of w, (r) = ¢, (r. u;x (), which provides a minimum to (3.2). We assume that
w; (r). z =D, are the unique points of minimum, and the quantities w ={; (r, p) provide the
minimum of min, (p. f (x. w)). w = W, when p = u;;. We assume that the function V; (r.p) are
determined in the neighbourhood of the point (z*. p*) = R*, {;, = 1}, and the functions

Fi(eop)=(p, flz.§; (x. p))) =1 (3.3)

are doubly smooth in the neighbourhood of the point (r*. p*). where P* = Ugy (7%) = w1 (2%).
Note that generally the quantities v, (z. p) have the sense of an extremal vector not for ail
points (r, p) in the neighbourhood. This occurs only for (x, p). where p = Uj == D;.

The constraints on the dynamic system have therefore been defined in terms of the functions
F;.{;. Their properties enable us to supplement the definition of the functions u; (x) in
the whole neighbourhood I'y, as doubly smooth eguations F; (¢, u;) = 0.7 = 0.1, with the Cauchy
conditions on T.. since for the universal surface without touching, the classical sufficient
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conditions for the existence and uniqueness of solutions are satisfied /12/. Then in T, two
smooth fields f (z) = Fy, (z, u; (z)), i =0,1 are defined, which for z < D; have the sense of
the optimal velocity field in the extremal problem considered here.

The optimal phase velocity on the surface I; is given by the equation

T=p@f @D +A—p@)FE) I<p<t (3.4)

where the scalar p(r) is obtained from the condition that the vector (3.4) touches the

surface I,; the dependence p=1pn(z), z&= T, is smooth. The inequalities in (3.4) follow
from the assumptions about the geometry of optimal trajectories in the neighbourhood of T;.
From (3.2) and the equation u,, = u;, when r & T; it follows that the derivative functions

u;; in the direction (3.4) are equal to -1, i.e. the integral lines of the field (3.4) are
optimal (singular) motions.

Since the vector diagram [ (r,W) is convex, a vector w* (z) = W, is obtained such that
right side of (3.4) equals f (a, u* (z)),z € T1. The phase velocity (3.4) corresponds to the
form of sliding mode in which the velocities f°(z} and f!(z) are used with weighting factors
p{z) and 1 — p(z). The traditional procedure in investing singular motions consists of
finding a singular control as a time function /6/. The motion over a singular manifold is
constructed here in the form of a sliding mode, using the optimal controls in regions D,.
The control parameters on the surface I'; are not considered here,

A singular optimal control may be re-established, after the solution of the problem, as
the resulting control of the sliding mode.

The basic result, the necessary condition of optimality that allows the use of construc-
tions developed in Sects.l and 2, is formulated below for a doubly smooth surface T;. which
simplifies the proof. This result may also be established at the cost of some complication,
for a smooth surface.

Lemma 4. Let I be a universal surface of class C? for which the conditions 1) 0<
plr)<t, zel;, and 2) F;,, uu e C?* i=0,1 are satisfied. Then u,, u; twice smoothly join
on I, i.e. (uy, 1) & K2 (Iy).

Proof. By a doubly smooth change of variables, which maintains the smoothness of the
functions u;(z), the surface I, can be reduced to the form (2.2). Hence, without loss of
generality, we assume that I, is defined by the equation =z, =0. By virtue of Lemma 1 it is
sufficient to show that

Ituy/0r)2 = &uyidnt. z eT, (3.5)

The smooth function p(r) is defined-only on TI;. This definition is smoothly extended

over the whole of T,, using the equation  p(z.70 ..., 2p) = p(0. 25, ...,253). Consider the smooth
field f*(z) = p(z) /°(z) + (1 — p (2)) /* (z) and the derivatives of the function ui (r) in the direction
of the field &;(s) = (uix(a). f* (a)), €T, By construction uj(zi= ~—1 when ze&Tl,. Using the

equations obtained by differentiation of the identity (Bellman's equations) (ujg(s). /i (2 +1=0,
we can derive for the partial derivatives ghiioz; for zre& I, the formulas

ok, (z) i {6 2 .
i = (=) (SR T I, (=01 (3.6)
dxy ( )}1,.1 (unz 01,2) relp ¢
where po=p, py=1—p and 7’ is the first component of the vector j(z). Note that by virtue
of assumptions about the geometry of the trajectories, i, and j! are non-zexo and have

different signs. If we now assume that (3.5) does not apply, then one of the inequalities
ohy/oxy < 0, Ohy/ory >0, z,& T, follows from (3.6). This means that at the point z,& T, which is
fairly close to I;. the inequality & (z,) <1 is satisfied for one of the indices i= 0,1
which contradicts the condition (3.2).

Thus,if in the problem of high speed action for system (3.1) a locally smooth universal
surface I, exists for which u; (), F; (x, and p)&E C?, then (u,, ;) & K2 (I}). In other words,
the set wu,. ¥3. I'' is the solution of Problem 1 for suitable Cauchy data. The second part of
the proof of Theorem 1 implies that the vector iz of the form (2.2), constructed from data
of the problem u;, F; touches the surface TI;. Moreover, it proves to be collinear with the
optimal phase velocity (3.4) on I

Indeed, the vectors z' in (2.2) and (3.4) emanate from the convex envelope of the
vectors Fo, =f°(z) and F,, = f'(z), and are tangent to TI,. Hence the two vectors z are
collinear and the coefficients of JF,, are proportional, i.e.

pt =W =AF, {Fo, FN{{F.. F)}, Fo}? (3.7)

In (3.4) the dot on z denotes differentiation with respect to time and in (2.2) with
respect to some ancillary parameter which differs by a scalar multiplier. The first egquation



148

of system (2.2) determines a sliding mode, if by a change of the differentiation parameter one
makes the sum of the coefficients of Fy, and F;, equal to unity. It follows from (3.7) that

in the case of a universal surface the signs on the brackets {{F,, F\}, Fo} and {F,, {F,. F.}}
are the same. This and the equation ({F,. F;} =0, 2=T, are the necessary conditions for the
presence of a universal surface. Both these conditions obtained by calculations on T, may
be used for a preliminary check of the existence of a given type of surface.

Let us sum up the reasoning presented above in the form of the necessary conditions given
below.

Lemma 5. Suppose that in the problem of high speed action of system (3.1) a smooth
universal surface I, exists in the small, for which u; (2), F;(z, p) = C-. Then the guantities
z and p =u;, in singular motions on T, satisfy system (2.2) apart from the parameter of
differentiation.

We emphasize that in the control problem the functions F, are independent of u;, which
to some extent simplifies system (2.2).

Rmplifying the smoothness requirements for the functions F;(z, p), we can formulate,
with suitable initial conditions, the sufficient conditions for the unversal surface to exist
in the small.

Suppose that in the phase space of system (3.1) the point z* belong to some smooth
hypersurface M which is divided by an (n — 2)-dimensional manifold T, z* =T, into two semi-
surfaces M, M, so, that M = ., — T, —+ ¥, Let the values v (z) of the optimal high-speed action
time u (r) and the smooth field of its gradient u, =r (z), 2 == M besuchthat F;(z, r(z) =0, z=
M;, i=0.1. Thequantities v, r canbe obtainedonM as the result of incomplete solution of
the problem of the synthesis of the high-speed action for system (3.1). The surface I! may,
in particular, be a section of the terminal manifold, and tv.r be the initial data for re-
trograde constructions. Let /= /{(r} be the normal to the surface ¥ z =M oriented in the
direction of the retrograde motion, i.e. (F,; 1) <0 when p=r(z), xr=3M,; i =0, 1. We denote
by TIy” the semineighbourhood of the point z*, cut off by the surface M in the direction of
the normal ! (z*). We recall that the formulas F;(z. p) are defined in (3.3) above.

Theorem 2. Suppose that for system (3.1) the functions (3.3) are thrice smooth, F;(x.
p)=C3% i =0.1 and on the surface ¥ for p = r (z) the following conditions are satisfied:
1) {(FoFy =V 2 =T, 0(—1) {F. FY<<0 2= M i =01
2) HEo P FQ AR (F 3} >0, 2=Ty,, 0=
son {{Fq. F}. Fo}:
3) Fuge L0, Firo p) =0, w;(z) =g (z, 1 (@), = M,
i=0, 1. .

Then in region [y~ smooth functions of the optimal result u (z). u (r) = v () exist when

z<= M, and a universal hypersurface I, with edge T..

The scheme of proof. First, let us explain the conditions of the theorem. Condition 1)
means that ({F, F,) on M has different signs on each side of [,. The double Poisson brackets
in condition 2) must have the sign on I that is consistent with the sign of {F, F;} on M,
Conditicns 1) and 2) ensure the characteristic divergence of optimal trajectories emerging in
the reverse direction from points of M. As the result, a wedge-shaped region that arises on
T, remains free of trajectories emerging (in the reverse direction) from the universal surface.
The surface TI,. whose existence is ensured by Theorem 1, divides the semicircle [Iy* into

two parts (by virtue of conditions 2 and 3). On the i-th side of T,, in which the semisurface
M, lies, we shall consider the Cauchy problem of the equation F;{r.p)=0 with boundary
condition on the piecewise smooth surface M;-—T,--T,.i=0,1. Solutions u; (- of these problems

may be constructed using the method of characteristics emerging from T, r; and M;. The
possibility of a union of functions defined by the characteristics emerging from TI; and M.
and also the required direction of motion along them (reaching I, and M, in the right time

by the optimal motion) is ensured by conditions 1)-3). Thus a smooth function u(s) equal to
u; (z) on the i~th side of T, that satisfies Bellman's equation (3.2) with the boundary con-
dition u(s = rv{a), s & M is constructed. 2As in the proof of Theorem 3.15 in /13/, we establish

that the function wu(r).r =T, is equal to the time of optimal high-speed action from point
z onto the set M.
In concluding, we point out that the question of double smoothness u{s) depends on
the smoothness of the union of the functions defined by sections of the boundaries of I, and
M. However, here it is sufficient to have u(r)e (.

4. Examples. In a number of problems of the theory of optimal control and of differential
games the sufficient conditions of Theorem 2 are satisfied, particularly problems such as the
maximization of the 1ift height of a probing rocket /5/, of the problem of the "killer driver",
and the "two-car game" /1/. The dynamics of the latter are defined by the relations
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I = —ru —vsinzg 3, =zuw—1—-vcosy, v<I1

xy = —u vy, jul<1t, |r]gt

Consider a universal surface in whose neighbourhood :=1. The Bellman-Isaacs equation
of the initial problem has the form /1/

Fe. p) == min, maxg H; — vypgr — Au =0
Hyt.pt = pvsinzg — p,vcosry — p, — 1
A ()= —piag - paty — 1y
Minimizng this with respect to u and setting :¢=1, we obtain (see (3.2))
Folz.pt=H—4=0. A>0, H=H ~ vy, .1)°
Fiz.pp=H—A=0. A<LO0

The respective control «wi(r.p)= —sgn4 in the notation of Sect.3 is Y,(z, = —1, §; (1, p) = 1.
After parametrization, the terminal set M /1l/ (it is a cylinder) is defined by the formulas
zy=lsins. 5, =1coss, 13=-=s, —n<s.85 <1 The transversality conditions yield

o= sin sy - [ EED =0
" COsNy — N €0 (82 — 83) Pr= <t ) — % COS (53— 87) | b (4.2)
According to the condition of Theorem 2 we must have on Iy, F,(z,p)= F,(z.p) = {Fo. F}} = 0.

But Ff,(e.;y= F,(r.p) =0 on M, hence the condition ({(F,. F,}=2{H,A}= —2p, =0 separates on M the
line T,* whose parametric representation according to (4.2) is either l* s=0 or =20 z1,=
1. We have on M 4 =p,=0. However, using reasoning similar to that in /1/ when constructing
the barrier in this game, it is possible to show that the line T, which belongs to TI.* and
corresponds to rv¢=1 is separated out by the relations —a s, <0, s; = 0. The neighbourhood I,
of the point 2*eT, defines on M two sets M, and M, separated by the line T, on which
55 <0 and s5>0 are respectively satisfied, and the optimal control u(z)=y.(r. p(z)) = sgns
is satisfied on M.

By direct calculation we obtain ({{F,, F,). F}=1{F,, {Fe, £}, = —2p, <0, vhen —~a/2<s<n2. The
sufficient conditions of Theorem 2 for the existence of a universal surface are, thus, satisfied
in the neighbourhood of T,.
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