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THE CONSTRUCTION OF UNIVERSAL SURFACES IN EXTREltAL FROBLEMS OF DYNAMICS* 

A.A. MELIKYAN and B.N. SOKOLOV 

One of the singular manifolds, often met in problems of optimal control 
and differential games, the universal hypersurface (the main line) /l/, 
is considered. The theory proposed here of that surface includes a 
certain Cauchy problem and the necessary condition of optimality of that 
surface. The latter enables us to reduce the construction of the surface 
to the Cauchy problem. The problem is formulated and sufficient conditions 
for its solvability are given. It is shown that the necessary condition 
of universal hypersurface optimality is the double smoothness of the 
optimum-result function on it. The sufficient condition for the existence 
in the small of a universal hypersurface is formulated. The paper is a 
continuation of investigations /2--41 of the singular manifolds in extremal 
problems of dynamics, and the subject is related to /5-g/. 

A universal manifold in the phase space of an external problem consists of (singular) 
optimal motions which from the neighbourhood of that manifold are incident on it an angle 
or are tangent to it. The universal hypersurface is the discontinuity surface of the positional 
/5/ optimal control /l/. The optimal-result function is continuous in the universal manifold 
neighbourhood and smooth on it, which follows from the geometry of trajectories. In the case 
of a hypersurface it appears that from the set of geometrically admissible surfaces the 
optimal one is that on which the optimal-result function is doubly smooth. This is one of 
the results of the investigation which to some extent selves the problem stated in /l/. 

Using in the simplest version /l/ the inverse procedure, the indication of the presence 
in the problem of the universal surface is the appearance of a region free of characteristics. 
Hence, when constructing a universal hypersurface, the optimal-result function must be con- 
structed simultaneously with the surface and on both sides of it. This defines the specific 
properties of the mat~,enatical problem of constructing the surface. In connection with the 
discontinuity of optimal positional control ./l/, it should be mentioned that on the singular 
manifold the function of minimu! (or minimax in game problems), used to write the equation 
/l, 7/, is discontinao,Js. 

Thus the singuiarity cf tie universal type of hypersurface is not related to the dis- 
continuity of the optimal-res*Jlt function and its first two derivatives. However, thE 
procedure for constructing it is similar tc that for constructing a weak discontinuity /3, 41, 
i.e. the discontinuity manifold of the optimal-result function. 

1. Statement of the Cauchy problem. jet two scalar functions 11~ (z), (11 (:c), z E R' 
of class (?'(I?,) nave on some hypersurface rl X r, Z /?" identical values of all partiai 
derivatives with respect to the vector components I = (.I~. .I,,) up to order m (where 1', is 
the neighbourhood cf some fixed point 1:. R"). We will assilDie that the pair of functions (M,,. ~1) 
smoothly jcin on rl. and we will denote that inclusion by (Ii,. ill) 5 h'" (r,). i.e. K"' (rl) is 
the set of all funczior.s of class F" (r,) that satisfy the conditions stated above. 

Let a smooth manifold rJ. dim r, = n-L?. rfC To and doubly smooth function L' (i-) G c* 

(r,:. F" (2). F, ;;). r = (.r, p, u) E R:"-' be specified. We will assume the point x* E rz to be 
fixed and WE wili denote the ncig:tio>Jrhood by To. 

Problem ;. Tc determine +Ae smooth manifold rl, din, rl = li - 1 and the pair of functions 
(Ijo (.( ). lil (.ri) z h‘z (r,) that satisfy the fcllowing conditions: 1) r, C 1-r C r,; 2) liL. (.l) = 
I,~ (x) = L' (,,). .C E 1‘?. and 3) F, (r. u,,. u,) -7 0, z E To, i = ti, 1. The conditions of solvability of 
this problem and the procedure for obtaining its solution are given below in Sect.2. 

2. Sufficient conditions of solvability. When 2= r2, the gradient p = uO. = i/r. 
of the functions IIz (I). 1 = u. 1 that are sought in problem 1 satisfies the set of equations 

(II - 1,. y,) = 0, j = 1, 2. ., n - 2, Fi (i, p, t.) = 0 (2.1! 

1 = 1.2. z E r2 
where yj = gj(J) is some basi s of the space tangent to r;? at the point I. 

Theorem 1. Let the functions F,. F1 be triply smooth and the following conditions be 
satisfied: 1) the vector p* is the solution of (2.1) at the point x*; 2) when z=x*,p= 
p*, u= ” (r*), the vectors .A. . . ., ;n 1 _?, FOP. P,, are linearly independent in R": 3) the 
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inequalities {{F,,Pr},F,} # O.{Fx, {F o.F~))#O hold at point (s*, p*, v’), and 
{FO. Fr} = 0 is satisfied, when p = o(z),r~r~. Then for each p* a unique 

rl of Problem 1 exists. The surface rr consists of the z-components of 

equations with the Cauchy conditions 

PF,,). 11' = (p. cl?') 

z (0) = x5, p (0) = w (3% u (0) = u (9). Jo E r* 

IF,, Fd = V,, I pF,,> Fv) - VI, + PFI,. Fop) 
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4) the equation 
solution ao, Ul. 
the solutions of 

(2.2) 

where p = w(r), ZE r2 is a smooth solution of (2.1), and {F,. Fr) is the Jacobi bracket of 

the functions F,. F1 /lo/. 
Let us formulate statements that will be used to prove Theorem 1. 

Lennnal. Let the pair of functions U,~E c2(r0) smoothly join on the manifold r,, (U, L.) E 

K' V-,:9 where 
r,: 11 = 0 (2.3) 

For a doubly smooth union (U, L, E li?(T,) it is necessary and sufficient that at the point 

PI the following equations are satisfied: 

un = 1'11, z E r, (2.4) 

Here and below the element'of the Hess matrix is denoted by u,,= S%,briSz,. 

Proof. The necessity of equation (2.4) is obvious. By the conditions of the lemma 
aui'irIi = adaI,, i = 1. . . II. when ZERO. We differentiate these equations with respect to I~..... 

InI i.e. with respect to the tangents to the directions r,. We obtain ui = ci,, i = I. . ., 
?I.! = 2, . ., n. These equations together with (2.4) constitute the required doubly smooth union. 

Lemma 2. Let the functions u(J).L(z) satisfy, besides the conditionsofLemma 1, the 
equations: F(z. u*. U, = 0, G (r, I*. I, = 0. z E rh. P (:I. c (2) E C?, I. = ,3,p, u). Then at points of the 
surface I', the equation 

holds. 

{F, G) - F,>G,, (U,, - En) = 0, z E r, (2.5) 

We differentiate the identities f(j.u,.~.'= (1, G (2, I~. I) = 0 with respect to 1?, i = I. .( n 
and obtain 

FI& -7 P F,.u,z 
,;_I 2 

-F&,=0 (P=ux) 

II 
Gx. -1. 1 G,,, 

2.1 ‘. 
-- chg. : 0 (q = rxl 

Let us multiply the first equation termwise by Gqz and the second by Fp and subtract the 

second from the first. Then adding then remainders obtained, related to the point IE rl. and 
faking into account that g= p.u,,= L., when j ,:>l,~ E rl. we obtain (2.5). 

Corollary. For every solction of ProbIer.: 1 

(f’,,. F,) = it for J = uIX (I). I s r, 

Lemma 3. Let the factions li. I E c-2 (I-,,! satisfy the conditions: 1) F(I. ux. 1,. = v. G (I. II. 
L) = 0. I E Ju. I‘, G E (‘2; 2) iu. 11 E h1 cr,i where r1 is a doubly smooth hypersurface, and 3) I 
are components of characteristics cf the equations F= O.G= 0. i.e. the vectors FA. 5 do not 
touch the surface r,. The condition (u. 1.1 E Ii: (rl! is satisfied if and only if (F,C)= 0 for 
p = U* = J1, U = I‘.,E rl. 

Proof. By the doubly smooth change of variables =='I (c1.5~ R" the surface rl is 
reduced to the form t, = (1. i.e. (2.3). The change I= v(E) generates in space (I.P. U) a 
point contact transfoxmationthatmaintains the Jacobi brackets jlO/. Owing to the non-degener- 
acy of the Jacobian det/ 6q 2:: ~(1, the condition of non-tangency to the surface rl is maintained 
in new variables. The statement of Lemma 3 then follows from (2.5). 

Note that Lemma 3 also holds for the surface rl of class c“. To prove this it is necessary 
to restate Lemmas 1 and 2 for the case of an arbitrary smooth surface rl, Preference was 
given above to a particular form of (2.3) because of the simplicity of the calculations. 

Proof of Theorem 1. The existence of a smooth solution p= r(r), IE rr of system (2.1) 
is ensured by condition 2) and the theorem on the implicit function. 

Let us establish the existence of a solution of Problem 1. We set F_,(z) s (JO. F,) and 
consider the Hamiltonian If (2) = i.,F, A i.,F, 2 i._,F_, when Al = {(r,. F,). F,], A, = (F,. (FO, F,}). i._, = F_, 
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12, 4/. 
Equations (2.2) represent the characteristic system 

J' = II,, p' = --H, - pll,. u' = (p. II,) 

consider on its own invariant manifold 

u‘= (z E I?*"-': F‘,(z) = 0. Fl (z) = 0. F_ (L) = 0) 

System (2.2) satisfies the standard conditions for the existence and uniqueness of a 
solution and its smooth dependence on the initial conditions /11, 12/. 

The transversality of the vector H,(-'j to the manifold J2 is ensured by conditions 1) 
and 2) of the theorem. Hence the I components of the solution of system (2.2) define the 
smooth manifold Jl= J?. On J, we have the specified Cauchy conditions for the two equations 
F, = 0. i = 0,l. By virtue of condition (2) and 3) the vectors F,,.F,P prove to be transversal 
to the surface I‘,. and hence the solution u,(r)= C*(I‘(,) of these equations exists /12/. By 
construction we have (F,,. F,)= 0 on r,. and hence the set ail. ul.J1 is the solution of Problem 
1. For any other solution of Problem 1 we have by virtue of Lemma 3 the condition (F,. F,:: 0 
that is specified on J,. 

Condition 3) implies that the gradient ~*ofthe function p(,;= (F,,. F,) is non-zero, when 
p = qx III. Direct calculation shows that the vector I' of the form (2.2) touches J2. i.e. 
kr. I'~ = 0, I E r,. and the derivative p' of the vector ~(21 in the direction of I' is defined 
by formula (2.2). System (2.2) satisfies the standard conditions for the existence and 
uniqueness of the solution whence follows the uniqueness of J,. The functions u0 (I). uI Clj 
are also unique solutions of the respective Cauchy problems. The theorem is proved. 

Note that instead of the vector p* in condition 1) of Theorem 1, we may consider the 
vector field p =~ U'(J) and the function V(X) on the manifold rz of class C'. made compatible 
by (2.1), as specified in advance, as done in the theory of equations in first-order partial 
derivatives /12/. 

3. Construction of the universal manifold. We shall use the results of Sects.1 
and 2 for the local construction of a singular universal surface in the problem of synthesis 
for a dynamically controlied system of the form 

:c' = t (.1. u); LL' E Ii‘; i-, 1 E Rn (3.1) 

where K'Z R”‘ is a closed bounded set. We shall consrder the problem of otpimal high speed 
action from an arbitrary initial point I 5 .II onto the terminal manifold .%f E R". 

Other problems of optimal control may be reduced to this problem by standard methods /l, 
5/. Note also that the universal surface considered below occurs not only in problems of 
optimal control but, also, in the theory of differential games. In the latter case the system 
of the form (3.1) may be obtained after substituting into the equations of motion of a game 
problem, of the continuous positional control of one of the players /7/. 

Let us write the assumptions and constraintsthatapplytotheproblemofhigh-speed action 
for system (3.11, which we shall limit to the open neig'hbourhood r ,- R" of some fixed point 
,r* = R”. Let there be in r0 an (?? - I)-dimensional smooth univeria‘; surface rl to which _. 
the optimal trajectories approach from both sides without touching it. The surface rl divides 
the neighbourhood rO, into two open regions D, : TO = D, L rl J-D1. Instead of indicating the 
regions by Di or Ta. we shall denote these regions by the expressions "the i-th side of 
surface" or "the neighbourhood of rl ' We set i.* SZ rI. 

We denote the optimal-result function on the r-th side of rI. f = 0. 1 by pi (I), x G Di. 
By assumption ui(r)s Cz (0,) the function u0 (1) and 11~ (r) smoothly join on the surface rI 

/Si. In regions D, the functions 12, (J) satisfy the basic equation /l, 5, 7/ 

FF; (r. ulX (I)) = min,,w (ozX. 1 (I. a.)) - 1 = (u,,(r). !'(I)) - (3.2) 
1=0, XED, 

Formula (3.2) is written on the assumption (taken as satisfied) that the Set f (z, M') is 

convex. The functions r'(r) are obtained by substituting into the right side of (3.1) the 
extremal value of u', (J) = \i'j (1. IIZX (I.)). which provides a minimum to (3.2). We assume that 
u‘, (r). .r f D, are the unique points of minimum, and the quantities u' = ti(r, p) provide the 
minimum of min, (p. ! (r. 1~.)). u' s 11', when p = u,,. We assume that the function $, (.r.p) are 
determined in the neighbourhood of the point (r*.p*)f Ran, 

r ( p) = @ f (I q. (,z, p),) _:I F “; and the functions I . , .I (3.3) 

are doubly smooth in the neighbourhood of the point (r*. p*). where p* = u,, (XT*) = hr (r*). 

Note that generally the quantities J'~ (s, p) have the sense of an extremal vector not for ail 
points (r, p) in the neighbourhood. This occurs only for (x, p). where p = uiz. J f Di. 

me constraintsonthe dynamic system have therefore been defined in terms of the functions 

F,. 11’2. Their properties enable us to supplement the definition of the functions u, (I) in 
the whole neighbourhood Tu as doubly smooth equations pi (.i. u,,) = 0. i = 0.1, with the Cauchy 
conditions on FL. since for the universal surface without touching, the classical SUfficiefit 
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conditions for the existence and uniqueness of solutions are satisfied /12/. Then in r0 two 
smooth fields f' (4 = Ff, (2, ut. (Z))? i = 0,1 are defined, which for .ZE Di have the sense of 
the optimal velocity field in the extremal problem considered here. 

The optimal phase velocity on the surface rr is given by the equation 

2' = Ir (2) P (s) + (I .- p (2)) r (z), 0 c p < i (3.4) 

where the scalar r(z) is obtained from the condition that the vector (3.4) touches the 
surface rr; the dependence p = r(r), SE rr is smooth. The inequalities in (3.4) follow 
from the assumptions about the geometry of optimal trajectories in the neighbourhood of rr. 
From (3.2) and the equation u,,* = uk when rE rr it follows that the derivative functions 

Pi* in the direction (3.4) are equal to -1, i.e. the integral lines of the field (3.4) are 
optimal (singular) motions. 

Since the vector diagram !(s,W) is convex, a vector ID* (r)E U', is obtained such that 
right side of (3.4) equals f (1.. u.* (I)),= E rr. The phase velocity (3.4) corresponds to the 
form of sliding mode in which the velocities p(z) and f’(z) are used with weighting factors 

cc (I) and I- p (r). The traditional procedure in investing singular motions consists of 
finding a singular control as a time function /6/. The motion over a singular manifold is 
constructed here in the form of a sliding mode, using the optimal controls in regions D,. 
The control parameters on the surface rr are not considered here. 

A singular optimal control may here-stablished, after the solution of the problem, as 
the resulting control of the sliding mode. 

The basic result, the necessary condition of optimality that allows the use of construc- 
tions developed in Sects.1 and 2, is formulated below for a doubly smooth surface rl. which 
simplifies the proof. This result may also be established at the cost of some complication, 
for a smooth surface. 

Lemma 4. Let r1 be a universal surface of class C2 for which the conditions 1) 0< 
~(4-d~ zErl and 2) FI, ui E Cz, i = 0,l are satisfied. Then uO, u1 twice smoothly join 
on rl, i.e. (u,, ul) E ii* (r,). 

Proof. By a doubly smooth change of variables, which maintains the smoothness of the 
functions Q(I), the surface r, can be reduced to the form (2.2). Hence, without loss of 
generality, we assume that r, is defined by the equation I>= 0. By virtue of Lemma 1 it is 
sufficient to show that 

d'u,:axl~ = L%+az,~. .z E r, (3.5) 

The smooth function F(I) is defined-only on T,. This definition is smoothly extended 
over the whole of rO, using the equation p (I,. I?. . ., zn) = p (0. II, . ., In). Consider the smooth 
field /*(I) = ~(I)/'(I) +(I- r(~))J1(z)and the derivatives of the function u, (I) in the direction 
of the field h, (z) = (uix (I). 1’ (I)!, z E To. By construction h, (11 = -1 when z E r,. Using the 
equations obtained by differentiation of the identity (Bellman's equations) (I+(Z). f'(r))+i = 0, 
we can derive for the partial derivatives &or1 for I E r, the formulas 

(3.6) 

where pO= p, pl= i-p and 1~1 is the first component of the vector $(zJ. Note that by virtue 
of assumptions about the geometry of the trajectories, 1,: and 1,' are non-zero and have 
different signs. If we now assume that (3.5) does not apply, then one of the inequalities 
dh,lar, < 0, 8hh,,‘bzl > 0, I* E r0 follows fron. (3.6) . This means that at the point I,E T,, which is 
fairly close to rl. the inequality h,(~J<i is satisfied for one of the indices 1= 0, i 
which contradicts the condition (3.2). 

Thus,ifintheproblem of high speed action for system (3.1) a locally smooth universal 
surface P, exists for which ui(z), F, (s, and P)E P, then (uO, ur)E K* (rl). In other words, 
the set uO, ur. 1'1 is the solution of Problem 1 for suitable Cauchy data. The second part of 
the proof of Theorem 1 implies that the vector r' of the form (2.2), constructed from data 
of the problem ui, Fi touches the surface rl. Moreover, it proves to be collinear with the 
optimal phase velocity (3.4) on rl. 

Indeed, the vectors I' in (2.2) and (3.4) emanate from the convex envelope of the 
vectors Fog = f’(t) and Flp = I'(z), and are tangent to r,. Hence the two vectors z* are 
collinear and the coefficients of F,, are proportional, i.e. 

p (1 - p = IF,, {Fo, Fd)((Fe Fl), F,)‘1 (3.7) 

In (3.4) the dot on z denotes differentiation with respect to time and in (2.2) with 
respect to some ancillary parameter which differs by a scalar multiplier. The first equation 
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of system (2.2) determines a sliding mode, if by a change of the differentiation parameter one 
makes the sum of the coefficients of FQ, and F1, equal to unity. It f0llOwS from (3.7) that 

in the case of a universal surface the signs on the brackets {(F,,F,}, F,} and {F,, {F,.F,)) 
are the same. This and the equation {fO. i',) = 0, z E lJ2 are the necessary conditions for the 
presence of a universal surface. Both these conditions obtained by calculations on rz may 
be used for a preliminary check of the existence of a given type of surface. 

Let us sum up the reasoning presented aboveintheformof the necessary conditions given 
below. 

Lemma 5. Suppose that in the problem of high speed action of system (3.1) a smooth 
universal surface rl exists in the small, for which Ui (I), Fi (r, p) F C’. Then the quantities 
5 and p = u,, in singular motions on r, satisfy system (2.2) apart frON the parameter of 
differentiation. 

We emphasize that in the control probleru the functions F, are independent of u,, which 
to some extent simplifies system (2.2). 

Amplifying the smoothness requirements for the functions Fi (z, p). we can formulate, 
with suitable initial conditions, the sufficient conditions for the unversal surface to exist 
in the small. 

Suppose that in the phase space of system (3.1) the point t* belong to some smooth 
hypersurface M which is divided by an (tc -2)-dimensional manifold r, .t* G r2 into two semi- 
surfaces .l/,..U1 so, that M = dl, - r? - .\I,. Letthevalues V(Z) of the optimalhigh-speedaction 
time U(Z) andthesNooth fieldofitsgradient II, = r (r), J % .I4 be such that F, (r. r (5)) = 0, z - 
.!I,, i = 0. 1. The quantities L‘, r canbeobtainedonM as the result of incomplete solution of 
the problenl of the synthesis of the high-speed action for system (3.1). The surface II may, 
in particular, be a section of the terminal manifold, and ~'.r be the initial data for re- 
trograde constructions. Let I= 1(x) be the normal to the surface M x G df oriented in the 
direction of the retrograde motion, i.e. (F,p, I) < 0 when p = r(z). I z JI,, i = 0, 1. We denote 
by rO- the semineighbourhood of the point I*. cut off by the surface M in the direction of 
the normal 1 (I*). We recall that the formulas F,(I. ,n! are defined in (3.3) above. 

Theorem 2. Suppose that for system (3.1) the functions (3.31 are thrice smooth, F, (I. 
p)Z c". i=U. 1. and on the surface M for p = r(z)the following conditions are satisfied: 

1) {F,. II) = u. I _= r?, 0 (-1)' (F,. F,) < 0. x E :V,. i = 0,l; 

2) {{l'n. P,]. F,,) (I,. (F,. F,}} > 0. s E I‘:, 0 = 
5p1: {IF,,. F]). I-‘,,). 

13) (I.>,,. I) < 0, F, (I. p) = u, II‘, (i) = ll‘z (5, r (z)), 5 z M,. 
i = Cl. 1. 

Then in region roe smooth functions of the optimal result u (I). u (s) = L' (t) exist when 
5 f .\I, and a universal hypersurface rl with edge I-?, 

The scheme of proof. First, let us explain the conditions of the theorem. Condition 1) 
means that {F,.F,) on M has different signs on each side of r?. The double Poisson brackets 
in condition 2) must have the sign on r_ that is consistent with the sign of (F,.F,: on 31, 
Conditions 1) and 2) ensure the characteristic divergence of optimal trajectories emerging in 
the reverse direction from points of M. As the result, a wedge-shaped region that arises on 
I‘? remains free of trajectories emerging (in the reverse direction) from the universal surface. 

The surface rl. whose existence is ensured by Theorem 1, divides the semicircle PO& into 
two parts (by virtue of conditions 2 and 3). On the I-th side of rl, in which the semisurface 
.\l,. lies, we shall consider the Cauchy problem of the equation F‘, (1. p, = U with boundary 
condition on the piecewise smooth surface X,-rr,T rl. 4 = 0,l. Solutions Yz (J' of these problems 
may be constructed using the method of characteristics emerging from I,, r; and M,. The 
possibility of a union of functions defined by the characteristics emerging from T1 and ‘II ,. 
and also the required direction of motion along them (reaching r, and M, in the right time 
by the optimal motion) is ensured by conditions l)-3). Thus a smooth function U(Z) equal to 

U> (li on the i-th side of rl that satisfies Bellman's equation (3.2) with the boundary con- 
dition U(I) = I‘(I), 2 E .\I is constructed. As in the proof of Theorem 3.15 in /13/, we establish 
that the function U(I).IZ TO- is equal to the time of optimal hiqh-speed action from point 
.l onto the set M. 

In concluding, we point out that the question of double smoothness u (7) depends on 
the smoothness of the union of the functions defined by sections of the boundaries Of rl and 
Mi. However, here it is sufficient to have U (I) E C'. 

4. Examples. In a number of problems of the theory of optimal control and of differential 
games t&e sufficient conditions of Theorem 2 are satisfied, particularly problems Such as the 
maximization of the lift height of a probing rocket /5/, of the problem of the "killer driver", 
and the I'two-car game" /l/. The dynamics of the latter are defined by the relations 
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t; = --I+ - Y sin I~. z.,’ = *,!I - 1 - \’ co5 Ia, v < 1 

*3 = --u 7 ryr, 1 u 1 < 1, IrI<l 

Consider a universal surface in whose neighbourhood F= 1. The Bellman-Isaacs equation 
of the initial problem has the form /l/ 

f (L. r! = min,, malt H, - vyp,+’ - A ~1 = u 

H, (2. pl = plv sin zs - pry cm I~ - p2 -- 1 

A (J‘. ,I) = -_.“*.rl -L pzr* - ps 

Minimizng this with respect to u and setting c=l, we obtain (see (3.2)) 

Fo (I. I') = H - A = 0. A >O; H = H, : \'y‘& ('1.1) ’ 

FI (I. /I’ = H - A = 11. A<0 

The respective control I‘ ,.r. pj = --.z@, A in the notation of Sect.3 is to(z,pl = --i.$,(L.p) cl. 
After parametrization, the terminal set M /l/ (it is a cylinder) is defined by the formulas 

II = I 9illS,. Ip = I CJ SI. .X3 = sl. --n <s,. s: < II. The transversality conditions yield 

According to the condition of Theorem 2 we must have on 1‘, F,, (z, P) = F, Ct. P) = If-,. F,J = 0. 

But r; (1. pl E F, (2.~) E <I on M, hence the condition (FO. F,)= 2 {H, A)= -2p, = 0 separates on M the 
line Fl* whose parametric representation according to (4.2) is either rz*: sI = 11 or T,= O,+= 
1. We have on 14 A =p3z 0. However, using reasoning similar to that in /l/ when constructing 
the barrier in this game, it is possible to show that the line Fr which belongs to I-,* and 
corresponds to c=l is separated out by the relations -x<s, <O, s1 =O. The neighbourhood I', 
of the point z'EF, defines on M two sets ,?f, and .8f, separated by the line F2 on which 

Sl < 0 and s,>O are respectively satisfied, and the optimal control u (z) = 1. (1. p (I)) = sgn 8, 
is satisfied on M. 

By direct calculation we obtain ((fo: F,). F")- (F,, (FO, F,:; = -2p, < 0, when --n/2 <+ < n,2. The 
sufficient conditions of Theorem 2 for the existence of a universal surface are, thus, satisfied 
in the neighbourhood of Fl 
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